博客
关于我
39. Combination Sum
阅读量:429 次
发布时间:2019-03-06

本文共 1964 字,大约阅读时间需要 6 分钟。

Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

The same repeated number may be chosen from candidates unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • The solution set must not contain duplicate combinations.

Example 1:

Input: candidates = [2,3,6,7], target = 7,A solution set is:[  [7],  [2,2,3]]

Example 2:

Input: candidates = [2,3,5], target = 8,A solution set is:[  [2,2,2,2],  [2,3,3],  [3,5]]

 

AC code:

class Solution {public:    vector
> combinationSum(vector
& candidates, int target) { vector
> res; vector
combination; sort(candidates.begin(), candidates.end()); backtracking(candidates, res, combination, target, 0); return res; } void backtracking(vector
& candidates, vector
>& res, vector
& combination, int target, int begin) { if (!target) { res.push_back(combination); return; } for (int i = begin; i != candidates.size() && target >= candidates[i]; ++i) { combination.push_back(candidates[i]); backtracking(candidates, res, combination, target-candidates[i], i); combination.pop_back(); } }};

 

Runtime: 
12 ms, faster than 61.39% of C++ online submissions for Combination Sum.

 

回溯法英语:backtracking)是中的一种。

对于某些计算问题而言,回溯法是一种可以找出所有(或一部分)解的一般性算法,尤其适用于约束满足问题(在解决约束满足问题时,我们逐步构造更多的候选解,并且在确定某一部分候选解不可能补全成正确解之后放弃继续搜索这个部分候选解本身及其可以拓展出的子候选解,转而测试其他的部分候选解)。

在经典的教科书中,展示了回溯法的用例。(八皇后问题是在标准国际象棋棋盘中寻找八个皇后的所有分布,使得没有一个皇后能攻击到另外一个。)

回溯法采用的思想,它尝试分步的去解决一个问题。在分步解决问题的过程中,当它通过尝试发现现有的分步答案不能得到有效的正确的解答的时候,它将取消上一步甚至是上几步的计算,再通过其它的可能的分步解答再次尝试寻找问题的答案。回溯法通常用最简单的方法来实现,在反复重复上述的步骤后可能出现两种情况:

  • 找到一个可能存在的正确的答案
  • 在尝试了所有可能的分步方法后宣告该问题没有答案

在最坏的情况下,回溯法会导致一次为的计算。

 

转载地址:http://agtuz.baihongyu.com/

你可能感兴趣的文章
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>